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An extended Galilean group and its application to time 
operators 
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Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK 

Received 2 March 1976 

Ahtract. The representation theory of the Galilean group extended by a one-dimensional 
group of dilations (which leave invariant the free Schrodinger equation) is studied. The 
existence of position and time operators is investigated from the standpoint of the 
imprimitivity theorem, for quantum particles whose states carry a projective representation 
of the extended group. Position and time operators are shown to exist for some two- 
component direct sums with non-trivial multipliers and for vector representations with zero 
helicity. 

1. Introduction 

The existence of commuting position operators for quantum particles was seen by 
Mackey (1963), and Wightman (1962) to be a question that could be settled using the 
imprimitivity theorem (Mackey 1949). Their method is to consider the representation L 
of the three-dimensional Euclidean group "(3) resulting from the restriction of the 
particle's projective representation of the whole kinematical group. If a system of 
imprimitivity P for the usual action of 8(3) on R3 can be defined for L then the 
corresponding particle is said to be localizable in space. Three position operators may 
be obtained from the projection valued measure whenever it exists. 

The idea that time should be treated as an observable in quantum theory is not new 
and has been considered recently from various points of view (Rosenbaum 1969, 
Almond 1973, Olkhovsky er al 1974). In this paper we present a treatment of position 
and time operators for free non-relativistic quantum systems based on the imprimitivity 
theorem. 

Following Almond (1973) we choose for our kinematical group the Galilean 
transformations of space-time points (x, t )  enlarged by the one-dimensional group of 
dilations d : (x, r )  + (dx, d2t) ,  where d is real and positive. We denote the enlarged 
group by 9. Let RT be the subgroup of time translations of 9 and suppose U is a 
projective unitary representation of 9. We say that the particle corresponding to U is 
localizable in space and time if there exists a system of imprimitivity P, based on R4 for 
the restriction of U to the direct product $(3) X RT. Such a P gives four operators, three 
are interpreted as position operators, the fourth as time. 

In § 2 we study the representation theory of 9 and find that three distinct classes, 
denoted U, v' and V- of irreducible projective representation occur for each non- 
trivial multiplier. Those of class U remain irreducible on the Galilean subgroup. For 
trivial multipliers we find four classes of unitary irreducible representations labelled Q, 
R+,  R -  and S. In Q 3 we construct the systems of imprimitivity required in Q 4 for the 
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localizability considerations. We find that none of the class U irreducibles are localiz- 
able and that the simplest localizable representation built from the classes and V is 
a direct sum of two irreducibles. For trivial multipliers only a subset of the Q are seen to 
be localizable. 

Throughout the remaining sections we use the word representation to mean ’unitary 
continuous representation’ and replace the group SO(3) by its cover SU(2) in the usual 
definitions of the Euclidean and Galilean groups. 

2. The representations of B 

2.1. Notation 

If we use the notation R l  for the space translation subgroup of 9 and R+ for the 
multiplicative group of positive reals then each element g of 9 may be written as 
(h, b, U, U, d) ,  for h E SU(2), b E RT, U E R:, U E R3 and d E R+. g maps the point (x, t )  to 
(x‘, t’) where, 

x ’ =  d2(hx +ut + U )  (1) 

t’= d(t + b). (2) 
The notation hx means 6(h)x ,  where S is the covering homomorphism S : SU(2) + 
SO(3). From this we obtain the product law 

(h’, b’, U’, U‘, d’)(h, 6, U, U, d )  = (h’h, b+(b’/d2), h‘u +dbu’+(u’/d), h‘v +du’,  d ’d )  

for 9. The Galilean subgroup is the set of elements for which d = 1. Let H 2 ( 9 ,  U(1)) 
denote the group of U(1) multipliers for 9. Almond (1973) has shown that 
H’(9, U(1)) is isomorphic to R and that each c r ~  If2(&& U(1)) is equivalent to one of 
the form 

where g’ = (h’,  b‘, U’, U’, d’) and m is a real parameter that changes the equivalence class 
in H2(9, U(1)). Corresponding to each non-trivial a ~ H ~ ( 9 ,  U(1)) there is a non- 
trivial central extension $?& of 9 by U(1) (Varadarajan 1970). The multiplication in GIv 
is defined by (g’, z’)(g,  z )  = (g’g, a(g‘, g)z’z), for z ‘ , z  E U(1). We call a projective 
representajion corresponding to a non-trivial a a a-representation and adopt the 
notation d‘ for the set of all irreducible cr-representations of a group d. ddenotes  the 
vector representations. To construct the BU we use the well known device of first 
constructing the &,. 

o,,,(g‘, g)  =exp[im(id2bu’2+dh’u, U’)] 

2.2. The projective representations 

In each extension 9,, the direct product R: XRTx U(1) is normal and each is 
isomorphic to a semi-direct product (R: x RT X U( 1)) @ rC where X is the subgroup of 
elements (h, 0, 0, U, d ) .  The homomorphism a : rC+ aut(@ X RTx U(1)) depends on a 
and is described by, 

b’= d2b 

u’=d(hu+bv)  

z’=exp[im(ibv2+hu. v)]z 
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when U is equivalent to um. Computing the dual action of a we find, 

E' = - U .  hp ++nmv2) (3) 

p' = d-'(hp - nmv) (4) 

n'= n 

for p E I@, E E kT and n integral. To construct '& it is necessary only to consider the 
orbits through n = -1. We observe that to each value of n there are three distinct orbits 
of ?E in@xkT, those through n = -1 are labelled by Xo, X' and X- corresponding 
respectively to the choices (0, 0, -l), (0, 1, -1) and (0, -1, -1) of initial point. The 
stability groups are SU(2) X R+, SU(2) and SU(2). From the relationship p f 2  + 2mE' = 
L 2 ( p 2 + 2 m E )  we deduce that Xo is the parabola p2+2mE = 0, which is also an orbit 
for the Galilean subgroup. X' and X- are respectively the unions 

U X "  and U X", 
E > O  " <O 

where X" is the Galilean orbit p 2  + 2mE = E. Mackey's method enables us to label the 
irreducible projective representations of 9 associated with the orbits X', X' and X- as 

of S^u(2) and (Y to the element ya : x - +  xiQ of k, for CY E R .  For our purposes it is 
convenient to have the Wigner function realizations (Niederer and O'Raifeartaigh 
1974) of these representations. They are, 

, and Vm~J'- respectively. Here j refers to the (2 j  + 1)-dimensional member Um.i,o! Vm,J,+ 

(UFJ'"f)(p) =d2"* exp i U .  p - -  D ' ( h ) f ( h - ' ( d p - m v ) )  [ (  
for f~ LE'2 (R3, C2"', d 3 p ) ,  and 

(VTJ3*f)(p,  ~ ) = d " ~ e x p [ i ( ~ ; ; ~ ( ~ - p ~ ) + u .  b p ) ] D ' ( h ) f ( h - ' ( d p - m v ) ,  d 2 & )  

for f~ LE"(R3 X R*, C2'+', d3pds*), where R+ and R- denote the positive and negative 
real numbers and d E *  is the restriction of Lebesgue measure to R*. We observe that 
each U is irreducible on the Galilean subgroup. 

2.3. The vector representations 

9 is a semi-direct product of R: x 88, with the group X. The dual action of Xis obtained 
by setting m = 0 in equations (3) and (4). Four orbits occur, consequently we have four 
classes Q, R+,  R- ,  and S of irreducible representations. The stability groups are 
isomorphic respectively to the two-dimensional Euclidean group 8 ( 2 ) ,  8(3), 8(3) and 
X. In terms of Wigner functions we have, 

(Q , f ) (p ,  E )  = d5'* exp[i(u . p +bE)]M~ho,vo,f(dh-lp,  d2E + d v .  p) 

for ~ E L E ' ~  (R4, X ( M ) ,  d3pdE).  Here ho is the Wigner rotation, V ~ E  R2 and M is an 
irreducible representation of 8 ( 2 )  in the Hilbert space X ( M ) .  

( R ; ~ ( E )  = d exp(ibE)L(h, d - ' l ~ I - ' l ~ v ) f ( d ~ ~ )  

for in X ( L ) .  Those belonging to class S are the 
irreducible representations of X. X is itself a semi-direct product and Mackey's theory 

Lf2 (R*, X ( L ) ,  dE&) and L E 
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may again be used. We obtain, 

( S i f ) ( p )  = d-3'2 exp[i(v . p + n&)]f(d- 'h- 'p)  

for f E Lf2 (R3, C, d 3 p ) ,  where & is the angle of ho and n is integral, and 

SI'" = D' @ y". 

3. Systems of imprimitivity for 6(3)X RT 

Restricting the action of 9 on (x, t )  to 8(3) xRT defines R4 as transitive 8(3)XRT 
space. As a consequence the $(3) X RT systems of imprimitivity for this action may be 
written down, up to equivalence, using the imprimitivity theorem. In particular we have 
the following lemma. 

Lemma 1. If P is a system of imprimitivity for the representation Uof 8(3 )  X RT, based 
on R4 under the restriction of the action described b equations (1) and (2) ,  then the pair 
(U, P )  is unitarily equivalent to a pair (V, F )  in Lf (R4, 2, d 3 x d t )  given by Y 

( V ( h , b . u ) f ) ( X ,  r )  =D(h)f(h- ' (x  - U ) ?  t - b )  

( F B f ) ( X ,  t )  = XB(x, t ) f ( x ,  t )  

where D is a representation of SU(2) in X and B is a Bore1 set of R4 with characteristic 
function xB. 

When D is equivalent to D' the corresponding Vof lemma 1 has the decomposition 

where W n , r , E ~  8(3) X lkT is described in terms of complex valued functions on the 
sphere p 2  = r by 

(Wn.'*Ef)(p) =exp[i(u. p + b ~ + n 4 ~ ) ] f ( h - ' p ) .  

4. Localizability 

4.1. 
Restricting the U"'" to 8(3) X RT we obtain 

in Lf2(R3, C21t1, d 3 p ) ,  which is clearly not of the form required by lemma 1. We 
conclude that none of the particles corresponding to these representations are localiz- 
able in space and time. 

4.2.  

The Vm9',* restricted to 8(3 )  X RT give 
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in T2 (R3 x R', @''+', d3pd~*).  Decomposing we obtain 

W+ & (lom WnVrsE dr) d E  
n = - J  0 

and 
m 

W-= 6 lo (In Wn,r,E dr) dE. 
nZ-1 -m 

Neither of these is equivalent to any of the representations described in lemma 1. 
However, the direct sum W'O W- does have a system of imprimitivity so that the 
particle corresponding to the representation Vm,j,+O V""- is localizable in space and 
time. Its time operator is -ia/aE. We note further that V'".',+O Vm3"3- cannot be 
localizable unless j = j ' .  The possibility of adding representations with different m is 
excludeh by Bargmann's super-selection rule (Levy-Leblond 1963). 

4.3.  

On restricting the Q representation when M is M" : ( h ( d ) ,  y) + exp($n$), where 

" h(4) = (exp(ii4) 
0 exp(-&) 

we obtain 

(wf)(p, E) = exp[i(u. P + bE + nddIf(h-'p, E) 

in T2(R4, C, d3pdE). If Q" denotes the representation induced using M" then by 
performing a Fourier transformation we observe that Qo is the only localizable 
irreducible but that any direct sum of the form O",=_, Q" is localizable. 

When M is equivalent to 

w%L~. y)k)(+)  =exp{ip W ( y ' + i y 2 )  exp(i+)I)k(+ -4) 

( Wf ) ( P ,  E) = expMu . P + h"~:, 0)  f (h - ' p ,  E ) .  

in Z2( U(1), 43, d+) the restriction to 8 ( 3 )  x RT is 

By expanding f in the form 
m 

f(h- 'p,  E)(+) = 1 cn(h-'p, E )  exp(in+) 
n = - m  

we see that Mrd,ol is infinite diagonal matrix with entries exp(in&,) for integral n. 
Hence the representation of 8(3) X RT for this case is 

m 

0 W" 
n=--0) 

where 

W" = 1-1 ( Inm W", r, E dr) dE, 

so that these do not correspond to localizable particles. 
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Finally if M is the representation 

(Mf’i,&~ y$)(+) =ex&i4 +ip Re[(y’ +iy2) exp(i+)l)k(+-4) 
the factor exp(ii4) has the effect of multiplying the matrix of the previous case by 
exp(qi4,) so that on 8(3) X RT we have 

0 wn 
n =*$,*;,+3,.., 

which is not localizable. 

4.4. 

Clearly the classes R* and S are not localizable in the sense defined. 
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